
# **MANUALE DEGLI STAMPI**

## PER LO STAMPAGGIO A INIEZIONE DEI MATERIALI TERMOPLASTICI



# PER LO STAMPAGGIO A INIEZIONE

DEI

#### 1. LO STAMPO: BENE D'INVESTIMENTO

Al giorno d'oggi, gli stampi per materiali termoplastici hanno un ruolo chiave nell'ingegnerizzazione della produzione moderna dell'industria manifatturiera.

La tecnica, l'esperienza e le nuove tecnologie hanno dato un grande impulso al settore della progettazione dello stampo che può disporre, oggi, di nuove conoscenze, teorie ed esperienze che possono porre i progettisti in condizione di trovare soluzioni, valutare vantaggi e svantaggi in certe scelte e usufruire di nuove strategie per incrementare i profitti di chi utilizzerà lo stampo per la produzione di pezzi.

#### BENE DI INVESTIMENTO

Si sa che lo stampo, una volta prodotto da un'officina meccanica, viene venduto non come bene di consumo ma come bene di investimento, e cioè come un prodotto che le aziende del settore dello stampaggio a iniezione associano al materiale e alla pressa, per produrre "beni di consumo", e cioè pezzi o parti di plastica, che vendono sul mercato.

Sono pertanto queste ditte che dovranno pagare il costo dello stampo e, quindi, la loro capacità di far fronte a questo impegno finanziario dipenderà dall'entità del profitto che riusciranno a ottenere col loro sistema produttivo.

A questo punto, però, ci si deve chiedere: è possibile progettare uno stampo anche con le migliori tecniche per risolvere tutti i problemi di tipo meccanico e funzionale, ignorando gli altri tre mondi: il materiale, la pressa e lo stampaggio, che, necessariamente dovranno interagire con lo stampo all'atto della produzione?

#### DATI TECNICI E PROCESSO DI STAMPAGGIO

I progettisti, oltre i dati tecnici di ritiro del materiale, dispongono del valido strumento di simulazione di riempimento impronte che li guida nella scelta del numero e della posizione dei punti d'iniezione, con lo scopo di ottenere un riempimento graduale e uniforme delle impronte, per evitare formazione di bolle d'aria o altri inconvenienti del processo di riempimento che possono essere eliminati con leggere variazioni di spessori su certe parti dell'impronta.

Per eseguire una simulazione, oltre la geometria delle impronte, servono anche molti dati tecnici del materiale che sono normalmente trasmessi dal fornitore.

Tra questi dati tecnici, però, ve ne sono alcuni che dovrebbero essere presi in considerazione ancora in fase di progetto dello stampo, perché hanno un'enorme influenza sui risultati qualitativi ed economici del processo di stampaggio.

L'attenzione che si rivolge al processo di riempimento delle impronte è più che doverosa, ma per arrivare alle impronte si deve attraversare un percorso, chiamato "cavità stampo", che include anche l'ugello della pressa, che spesso genera condizioni di stampaggio che vanificano l'attenzione e l'importanza rivolta al solo processo di riempimento delle impronte.

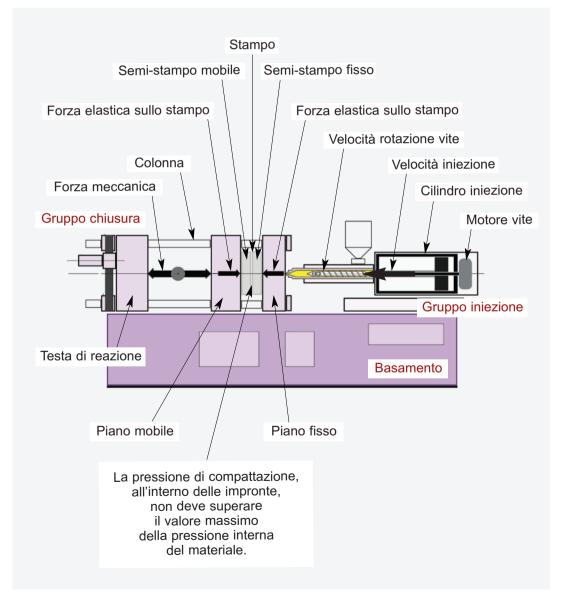
Nel mondo della produzione dello stampaggio a iniezione, inoltre, non vi è la consapevolezza delle difficoltà e dei danni provocati da certe scelte fatte sulle "cavità stampo" e quindi, non procedendo con un metodo scientifico, in produzione si continua a modificare i parametri di stampaggio, con l'intento di eliminare i difetti che si manifestano sui pezzi stampati.

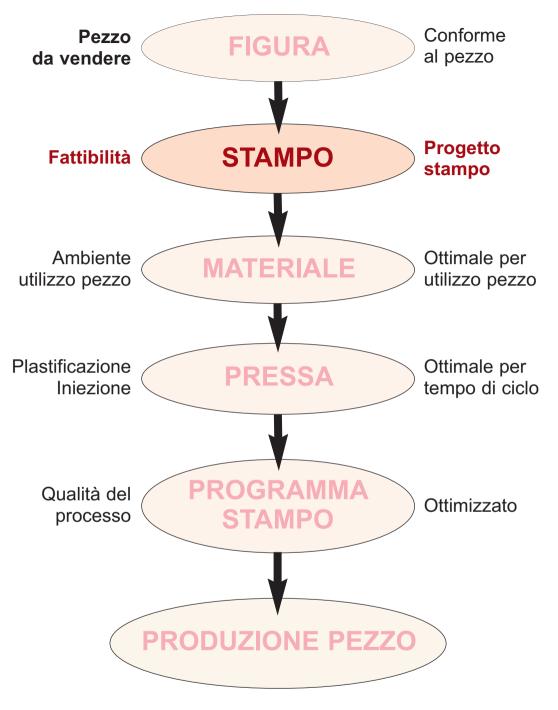
Ci poniamo la domanda: è possibile progettare uno stampo in modo tale che in produzione si possa ottenere il massimo della qualità del processo produttivo, il massimo della qualità dei pezzi e il massimo del profitto?

La risposta è affermativa, solo che si deve impostare il progetto e la produzione in modo scientifico, creando una stretta collaborazione tra il mondo del progetto dello stampo e il mondo della produzione che si deve basare su un'impostazione scientifica del processo di stampaggio.

#### NECESSITÀ DI COLLABORAZIONE

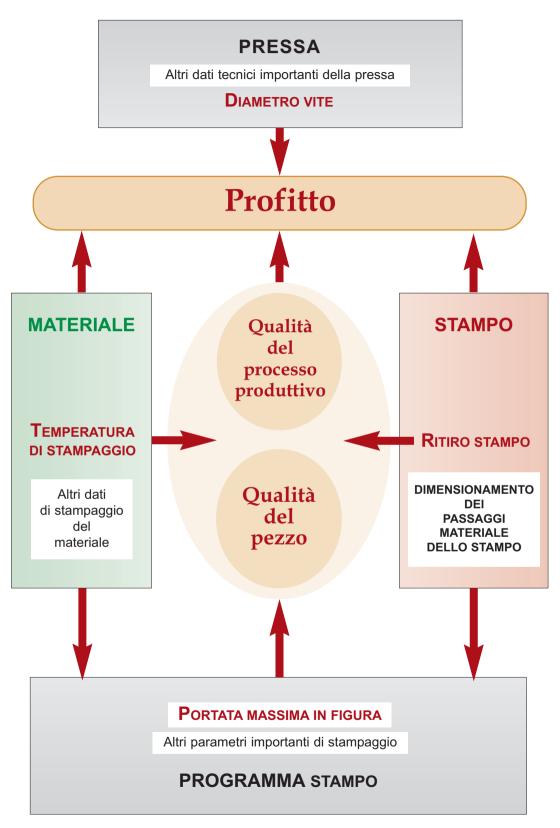
Per ottenere i migliori risultati, quindi, è necessaria una collaborazione tra il progettista stampo e i responsabili di produzione, ma questa è possibile solo se vi è una sovrapposizione di conoscenze che oggi non esiste, ma che è la chiave che apre la porta ad un nuovo modo di lavorare che offre i migliori risultati qualitativi ed economici in ambito produttivo e in quello del progetto dello stampo.


Il progettista stampo e il responsabile di produzione, devono sapere che la qualità del processo produttivo e la qualità del pezzo si possono ottenere in modo scientifico, ma perché questo diventi una realtà, nella fase di progetto dello stampo, si devono adottare scelte, soluzioni e dimensionamenti che garantiscono l'ottimizzazione del processo produttivo e i conseguenti risultati economici.


Sintetizziamo questo nuovo concetto cogliendo, nella fase di progetto dello stampo, l'aspetto fondamentale e il punto strategico che è rappresentato dal dimensionamento dei passaggi materiale, e cioè dalla definizione delle forme e dimensioni delle cavità interne allo stampo che collegano l'ugello della pressa con l'impronta. L'ignorare l'importanza e la necessità di tale dimensionamento diventa la fonte di una serie di gravi problemi, talvolta irrisolvibili, la cui gravità consiste nel non riuscire a riconoscerne la vera causa, e questo non solo da parte del progettista dello stampo, ma anche da parte dei tecnici della produzione.

## 1.2. La pressa a iniezione

Lo stampo è montato su di una pressa a iniezione: il semi-stampo fisso è montato sul Piano fisso della pressa, il semi-stampo mobile sul Piano mobile. La pressa è composta dalle tre parti:


- 1. Basamento:
- 2. Gruppo chiusura;
- 3. Gruppo iniezione.





## **QUALITÀ CONCORDATA COL CIENTE**

## **MASSIMO PROFITTO**



#### 3. TIPOLOGIA STAMPI

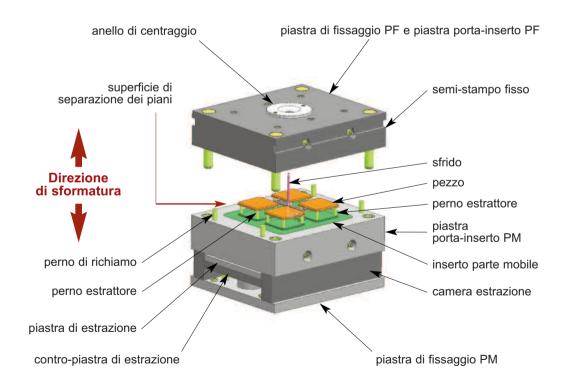
La tipologia degli stampi è legata a diversi fattori e scelte che caratterizzano la concezione dello stampo, tra i quali primeggia la quantità totale dei pezzi da produrre e relativi lotti di produzione, che sono alla base degli studi di progettazione dello stampo, per definire il numero delle impronte, il costo dello stampo, il costo orario della pressa e, infine, il costo unitario del pezzo.

Escludendo i casi particolari di stampi con impronte diverse e quelli per manufatti che, per le enormi dimensioni, richiedono più iniezioni, ecco l'elenco dei fattori principali che determinano le caratteristiche degli stampi:

- quantità totale dei pezzi da stampare e lotti di produzione;
- proprietà estetiche, meccaniche e dimensionali;
- impronte di manufatti a singola iniezione;
- numero di impronte uguali nello stampo;
- pezzi senza sottosquadro;
- pezzi con sottosquadro;
- stampaggio con estrazione dei pezzi insieme allo sfrido;
- stampaggio con estrazione dei pezzi separatamente dallo sfrido;
- stampaggio di pezzi senza lo sfrido.

Prendendo in considerazione tutte le combinazioni dei fattori elencati, principalmente caratterizzati dall'assenza o presenza di sottosquadri e diversificati in base al tipo di estrazione dei pezzi in relazione allo sfrido, tratteremo le seguenti cinque tipologie di stampi per i materiali termoplastici:

- 1. Stampo standard a due piastre;
- 2. Stampo a due piastre con parti mobili;
- 3. Stampo con estrazione a terza piastra;
- 4. Stampo con parti mobili ed estrazione a terza piastra;
- 5. Stampo a due piastre con parti mobili e camere calde.


Poiché il materiale plastico utilizzato per il manufatto, impone la scelta del tipo adeguato di acciaio per le piastre punzone e matrice, tutti e cinque gli stampi sopra elencati, avranno in comune la soluzione degli **inserti** nelle piastre punzone e matrice. Di seguito, illustriamo gli aspetti fondamentali di questi cinque stampi, evidenziando la tipologia del pezzo stampato, il numero delle superfici di separazione dei piani, il tipo di estrazione in relazione allo sfrido, il numero delle fasi di apertura stampo e la successione dei movimenti all'interno dello stampo per lo svolgimento di tutte le sue funzioni.

## 3.1. Stampo standard a due piastre

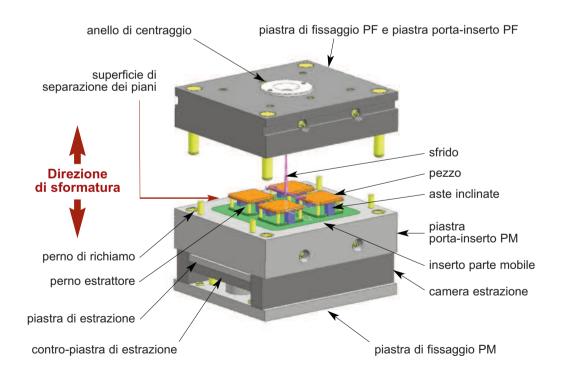
- Si usa per lo stampaggio a iniezione di pezzi privi di sottosquadro.
- Lo stampo presenta **una superficie** di separazione dei piani.
- I pezzi e lo sfrido sono espulsi dallo stampo come corpo unico.
- L'apertura dello stampo avviene con una sola fase di apertura.

Terminata la fase d'iniezione e trascorso il tempo di raffreddamento, lo stampo viene aperto: il semi-stampo mobile si allontana da quello fisso, strappando la carota dalla sua alimentazione. Giunti allo stop apertura, l'estrattore centrale, con le piastre di estrazione e i suoi perni, espelle i pezzi insieme allo sfrido, tornando poi in posizione di riposo.

Nel caso di sganciamento delle piastre di estrazione dall'albero filettato del pistone di estrazione, i "perni di richiamo" fungono da sicurezza, per riportare le piastre di estrazione nella loro posizione arretrata di riposo.



Stampo standard a due piastre.


## 3.2. Stampo a due piastre con parti mobili

- Si usa per lo stampaggio a iniezione di pezzi con un sottosquadro.
- Lo stampo presenta una superficie di separazione dei piani.
- Sganciato il sottosquadro, i pezzi e lo sfrido sono espulsi come corpo unico.
- L'apertura dello stampo avviene con due fasi di apertura.

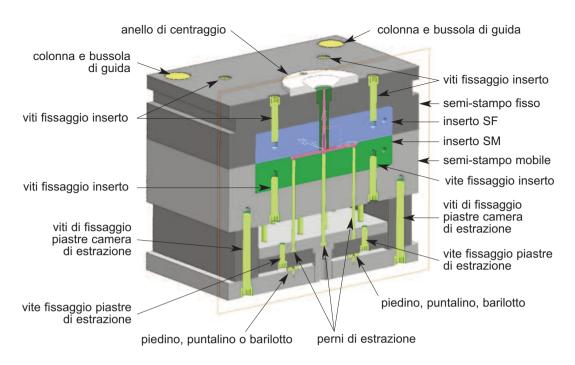
Terminata la fase d'iniezione e trascorso il tempo di raffreddamento, lo stampo viene parzialmente aperto (prima apertura) e la carota viene strappata dall'alimentazione insieme ai canali di alimentazione impronte. Contemporaneamente, le parti mobili, spinte dalle piastre di estrazione, liberano i pezzi dal sottosquadro.

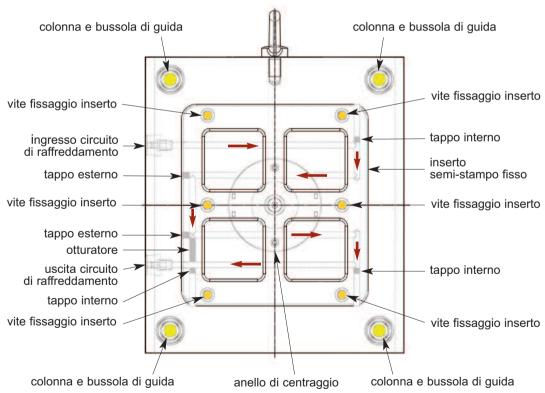
Giunti allo stop apertura (seconda apertura), l'estrattore centrale, con le piastre di estrazione e i suoi perni, espelle i pezzi dalle impronte insieme allo sfrido.

Con la successiv chiusura stampo, il sistema di estrazione guida le aste inclinate in posizione di adesione al sottosquadro. Nel caso di sganciamento del sistema di estrazione dal pistone di estrazione, i "perni di richiamo" fungono da sicurezza, per riportare le piastre di estrazione nella loro posizione arretrata di riposo.




Stampo a due piastre con parti mobili.


#### 4.2. I due semi-stampi


La figura sottostante illustra i due semi-stampi, in una vista tridimensionale e in trasparenza, che consente la visualizzazione delle parti interne. Tra queste parti, le più importanti sono:

- 1. Le colonne e bussole guida: le quattro colonne sono installate e fissate sul semi-stampo fisso con la lunghezza di accoppiamento con le quattro bussole appoggiate al semi-stampo mobile.
- 2. **I circuiti di condizionamento dello stampo:** suddivisi nei due semi-stampi, questi circuiti hanno ingresso e uscita e si sviluppano intorno alle impronte, per mantenere la temperatura dell'inserto alla temperatura stampo prestabilita.
- 3. **I distanziali:** presenti solo sul semi-stampo mobile, ai due lati opposti dell'inserto, sono avvitati alla piastra di fissaggio con la funzione di sostenere la piastra porta-inserto quando è soggetta alle forze assiali che si sviluppano durante la fase di riempimento delle impronte.



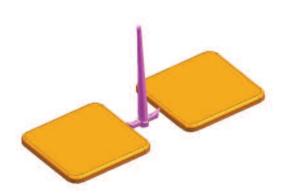
Stampo standard a due piastre: i due semi-stampi in trasparenza.






Sezione centrale e disegno del semi-stampo fisso dello stampo standard a 2 piastre.

## 4.8. Elementi guida e viti di fissaggio


Le colonne di guida e le relative bussole dei semi-stampi hanno un'importanza enorme per lo stampo, poiché devono assicurare la perfetta centratura dei semi-stampi nelle fasi di accoppiamento e di applicazione della forza di chiusura. Nella fotografia sottostante, sono riportate le immagini delle colonne e delle bussole guida standard, più comunemente utilizzate.





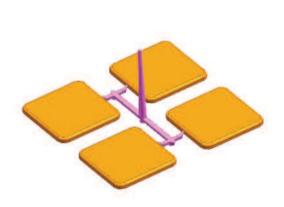
#### ESEMPIO ANALISI COSTI CON STAMPO A 2 IMPRONTE

Analizziamo, ora, il costo complessivo di stampo e produzione pezzi, con uno stampo a due impronte, sempre con la stessa produzione totale di 100.000 pezzi.



Esempio di pezzi stampati con uno stampo a 2 impronte.

Produzione: 100.000 pezzi. **Costo stampo a 2 impronte:** Euro 30.000.


**Costo unitario del pezzo** (prodotto con lo stampo a 2 impronte): Euro **0.30.** 

Costo complessivo di 100.000 pezzi:  $100.000 \times 0.50 = \text{Euro } 30.000$ . Costo complessivo stampo + pezzi: Euro 60.000.

L'analisi dei costi dimostra che, scegliendo uno stampo a 2 impronte, si possono risparmiare 10.000 Euro per effettuare 1'intera produzione di 100.000 pezzi.

#### ESEMPIO ANALISI COSTI CON STAMPO A 4 IMPRONTE

Analizziamo, ora, il costo complessivo di stampo e produzione pezzi, con uno stampo a quattro impronte, sempre con la stessa produzione totale di 100.000 pezzi.



Esempio di pezzi stampati con uno stampo a 4 impronte.

Produzione: 100.000 pezzi. **Costo stampo a 4 impronte:** Euro 36.000.

Costo unitario del pezzo (prodotto con lo stampo a 4 impronte):

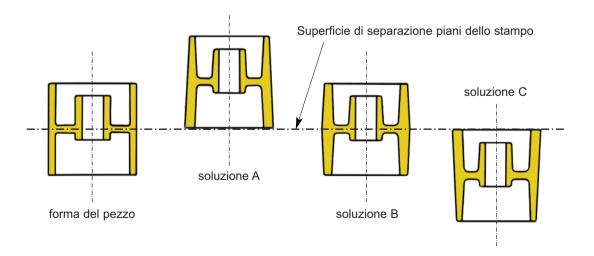
Euro **0,18.** 

Costo complessivo di 100.000 pezzi: 100.000 x 0.18 = Euro 18.000. Costo complessivo stampo + pezzi: Euro 54.000.

L'analisi dei costi dimostra che, scegliendo uno stampo a 4 impronte, si possono risparmiare Euro 6.000 per effettuare l'intera produzione di 100.000 pezzi.

## 7. SFORMABILITÀ

Nello stampaggio a iniezione, oltre alle considerazioni relative agli aspetti funzionali ed estetici del pezzo, si deve avere una particolare attenzione alle esigenze della sua sformabilità, e cioè la possibilità di estrarre il pezzo dallo stampo, dopo che si è raffreddato alla sua temperatura di estrazione.


## 7.1. Principi generali di sformatura

Gli aspetti fondamentali che concorrono alla sformatura ed estrazione sono:

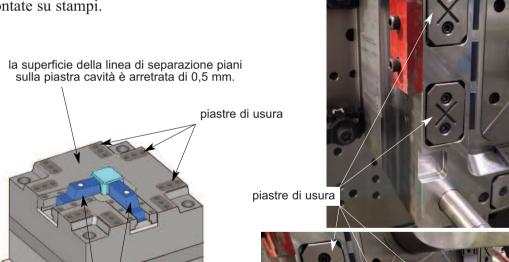
- Superficie di separazione piani dello stampo;
- Posizione pezzo in direzione di sformatura;
- Spoglie del pezzo e angoli di spoglia;
- Sottosquadri da sformare preventivamente;
- Estrazione del pezzo.

## 7.2. Superficie di separazione piani dello stampo

La necessità di aprire lo stampo, per estrarre i pezzi, rende indispensabile la superficie di accoppiamento tra i due blocchi piastre che costituiscono lo stampo. Questa può avere un solo livello oppure articolarsi in una superficie di separazione piani a più livelli e anche con altre forme oltre quella piana.

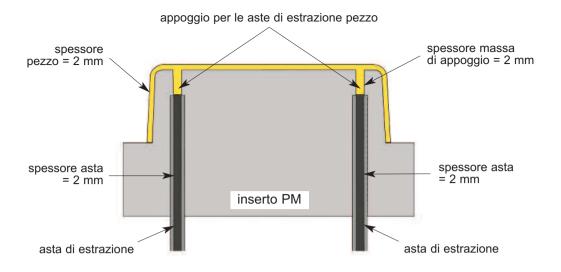


Superficie di separazione dei piani e possibili sformature del pezzo.

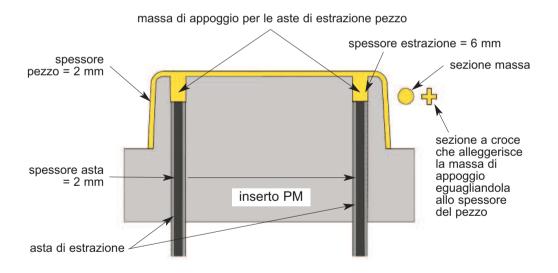

## 7.11. Piastre di usura sulla separazione piani

Le superfici della linea di separazione dei piani rappresentano un sigillo alle superfici interne delle cavità stampo e richiedono un parallelismo e un allineamento perfetto quando lo stampo è chiuso. In certe situazioni di complessità o di asimmetrie dovute a parti mobili, per assicurare il perfetto parallelismo dello stampo, si possono installare "piastre di usura", in posizioni periferiche o solo sul semi-stampo fisso, oppure su entrambi i semi-stampi fisso e mobile.

Queste "piastre di usura", che hanno generalmente forma rettangolare o circolare, sono posizionate e avvitate alle piastre stampo, in modo da avere un contatto su un unico piano, alla chiusura dello stampo. Queste piastre devono avere uno spessore


tale da essere tutte allo stesso livello, mentre negli stampi con parti mobili, con superficie della linea di separazione piani "a sbalzo", lo spessore delle piastre di usura deve consentire lo spazio per il componente mobile lasciando, tra la sezione della linea di separazione dei due semi-stampi, una distanza di circa 0,5 mm.

Le figure sottostanti mostrano "piastre di usura" montate su stampi.




pressione uniforme sullo stampo malgrado la presenza dei due componenti mobili.

Esempi di stampi con piastre di usura.



Essendo lo spessore massa di appoggio di 2 mm, come lo spessore pezzo, il tempo di raffreddamento rimane inalterato.



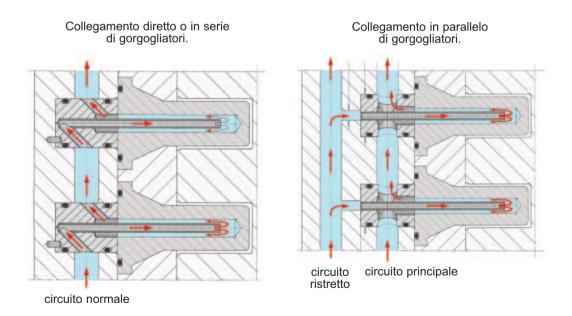
Essendo lo spessore massa di appoggio di 6 mm e lo spessore pezzo di 2 mm, il tempo di raffreddamento viene aumentato del rapporto: 6² / 2² = 9 volte.

Sostituendo la sezione circolare, con quella a stella, di lato 2 mm, avendola eguagliato lo spessore della massa di appoggio allo spessore pezzo, il tempo di raffreddamento rimane inalterato.

Masse di appoggio per le aste di estrazione pezzo.

#### GORGOGLIATORE (FONTANA)

Per i fori più piccoli, sono utilizzati i **gorgogliatori** chiamati anche **fontane.** L'acqua scorre attraverso un tubo sottile, al centro, e ritorna sulla parete del canale. Il diametro del foro del tubo centrale del gorgogliatore va da 0,8 mm a 7 mm per la variante più grande, per fori da 4 a 12 mm.


Per diametri più piccoli, bisogna assicurarsi che l'acqua sia pulita. Le più piccole particelle di sporco nell'acqua, infatti, causano l'intasamento del piccolo foro del tubo centrale del gorgogliatore. Deve inoltre essere garantito che il resto dei canali di raffreddamento sia pulito e che non vi siano altri tipi di contaminazione o di corrosione nel circuito di raffreddamento.

I **gorgogliatori** sono integrati con un collegamento diretto o forniti congiuntamente come raffreddamento parallelo per un foro.

Per il **collegamento diretto,** o in serie, dovrebbero essere collegati come circuiti separati, per non ridurre la portata ai canali normali.

Per il **collegamento parallelo**, il flusso del foro principale crea una specie di aspirazione che attira l'acqua attraverso i circuiti ristretti del gorgogliatore.

Per evitare corrosione, i gorgogliatori sono fatti di ottone e acciaio inossidabile. Le figure sottostanti mostrano gorgogliatori collegati in serie e in parallelo.



Gorgogliatori con collegamento diretto e parallelo.

## 9.10. Esempi di sistemi di monitoraggio FT

#### Sistema di monitoraggio FT-1

Monitoraggio della portata reale di una centralina, con fluido ad acqua, di un circuito di raffreddamento stampo, fino alla temperatura massima di 90 °C.



#### Sistema di monitoraggio FT-2

Monitoraggio di portata e temperatura reali di due circuiti di raffreddamento stampo, fino alla temperatura massima di 90 °C, comprensiva di display a bordo pressa.

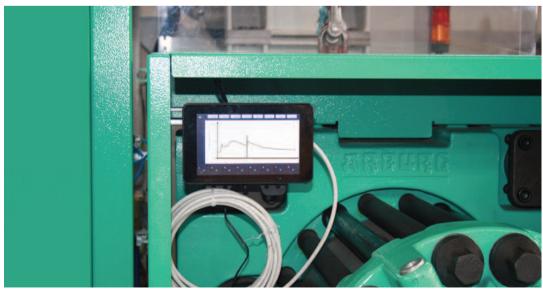


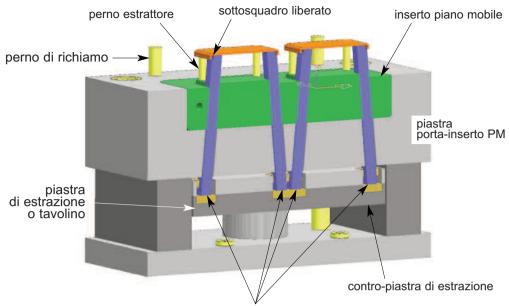
I due sensori di flusso e temperatura monitorano le portate e temperature che sono misurate, al termine dei due circuiti di raffreddamento ad acqua dello stampo, ed i loro valori nel tempo sono registrati su un Display con grafici.



#### Sistema di monitoraggio FHT-1

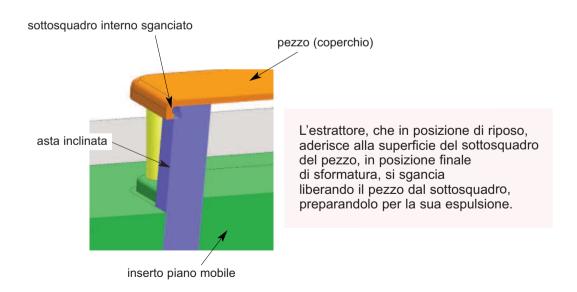
Monitoraggio della portata e temperatura reali di una centralina di condizionamento stampo, con temperature fino a 180 °C.





Sopra: La centralina con un sensore di temperatura (in primo piano) e un sensore di flusso (in secondo piano).

A destra: Master IO link per la rilevazione dei dati in continuo, montato con supporto magnetico sul carter della pressa.

Sotto: Il Display che visualizza e registra i grafici del flusso e della temperatura nel tempo.



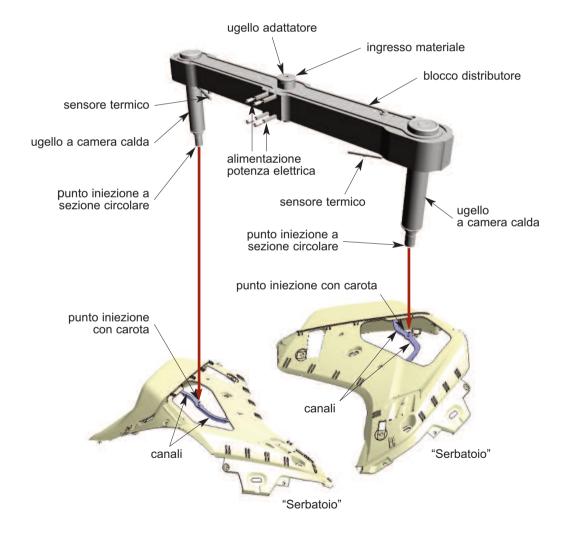





aste dell'estrattore inclinato in posizione termine corsa

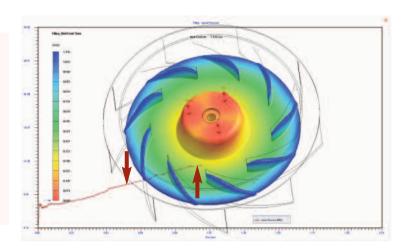
L'estrattore ad aste inclinate è giunto alla sua posizione di termine corsa, sganciando il pezzo dal sottosquadro interno, preparandolo per la sua espulsione.




Parti mobili: estrattore ad asta inclinata.

#### Analisi dei costi

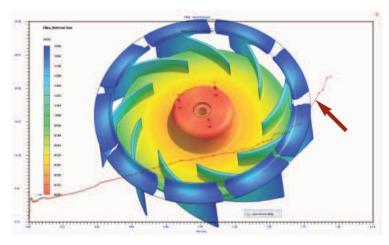
Avendo un sistema distributore a camere calde un costo elevato, si deve fare un'analisi comparativa tra la scelta a canali freddi con sfrido e quella delle camere calde senza sfrido. L'elemento chiave, per la comparazione, è sempre il numero totale dei pezzi e i lotti di produzione, anche se si può prendere in considerazione la possibilità di poter utilizzare il sistema a camere calde anche per altri stampi.


#### Esempi di camere calde con più ugelli

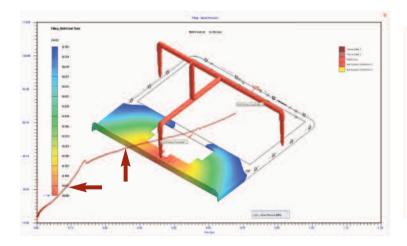

Vediamo ora, alcuni esempi di sistemi a camere calde con più ugelli, in cui si possono facilmente individuare le parti componenti: l'ugello adattatore, il blocco distributore, gli ugelli a camere calde, i punti d'iniezione e il manufatto.



Sistema a camere calde con 2 ugelli per il "Serbatoio".

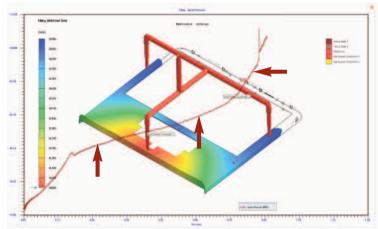

Il riempimento
dell'impronta procede
sempre in modo
lineare con un
aumento lineare della
pressione che ha una
leggera flessione
quando il fronte entra
nella zona delle
alette verticali.

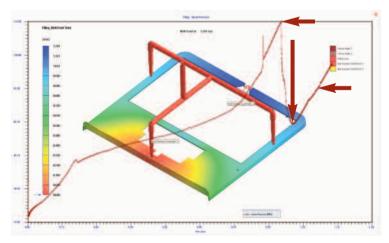





Il materiale ha riempito completamente il volume delle alette verticali ed entra nella zona anulare esterna della ventola, di sezione più stretta, che fa aumentare il gradiente di pressione.

Il materiale sta riempiendo solo la zona anulare esterna di sezione stretta, causando un aumento del gradiente di pressione che rimarrà costante fino al completo riempimento.





La simulazione dimostra che l'uso dei tre punti d'iniezione nelle loro tre posizioni ravvicinate e in prossimità del foro centrale della ventola, è una scelta valida per ottenere un riempimento graduale e uniforme del manufatto.

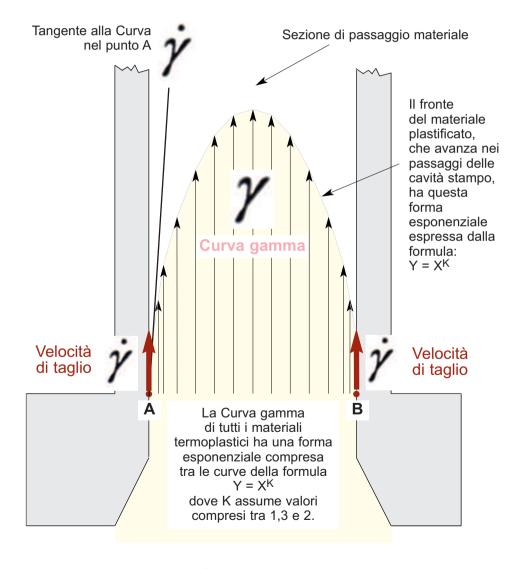


Con velocità costante, il materiale procede nelle due parti laterali a sezione più grande; infatti, il gradiente di pressione è inferiore al precedente per l'allargamento della sezione di passaggio.

Riempita la parte piana del pannello, il flusso continua a velocità d'iniezione costante entrando nelle due parti strette laterali. Questo provoca un aumento del gradiente di pressione fino al punto di attivazione degli altri due punti d'iniezione.






Aperti i due punti d'iniezione laterali, con una velocità d'iniezione inferiore (evidenziata dall'abbassamento della curva di pressione), il riempimento impronta procede fino al congiungimento dei due flussi laterali, seguito dalla fase di compattazione, aprendo tutti e tre i punti d'iniezione.

La scelta corretta delle posizioni dei tre punti d'iniezione e quella degli interventi sequenziali ha reso possibile un riempimento graduale ed una compattazione uniforme del materiale del manufatto, limitando le pressioni a livelli contenuti.

## 19.2. Velocità di taglio

Il materiale, quando scorre in una passaggio interno dello stampo, per il maggior attrito esistente sulla superficie metallica, rispetto a quello tra gli strati interni del materiale, assume una forma esponenziale (Curva gamma), come quella rappresentata in figura. Le velocità, dal valore centrale si riducono fino al valore di quella a contatto con la superficie metallica. Questa velocità si chiama: **Velocità di taglio.** Il valore della Velocità di taglio è la derivata della Curva gamma, calcolata nel punto di contatto del materiale con la superficie metallica.

La Velocità di taglio viene pertanto chiamata: Gamma punto.  $\dot{\gamma}$ 

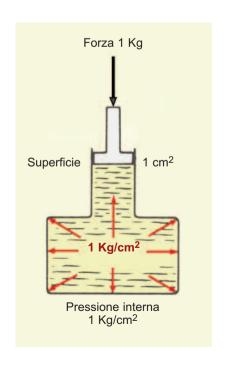


La curva gamma del fronte di avanzamento del materiale.

#### Produzione del primo lotto

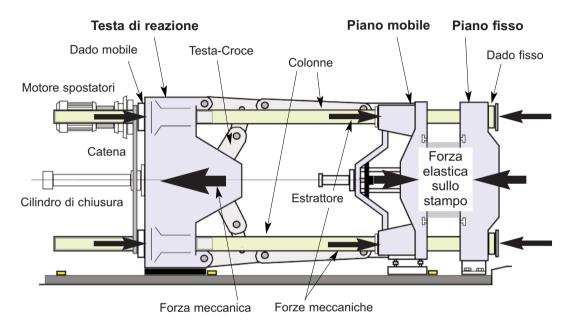
- Attrezzature e strumenti necessari;
- Materiale necessario per le prove;
- Montaggio dello stampo;
- Verifica del funzionamento dello stampo;
- Eliminazione dei difetti sul pezzo;
- Ottimizzazione del programma stampo;
- Ottimizzazione del tempo totale di ciclo;
- Analisi sul miglioramento futuro della qualità;
- Verifiche del progettista in prova stampo;
- Smontaggio dello stampo;
- Manutenzione programmata.

## 21.1. Conoscenze preliminari

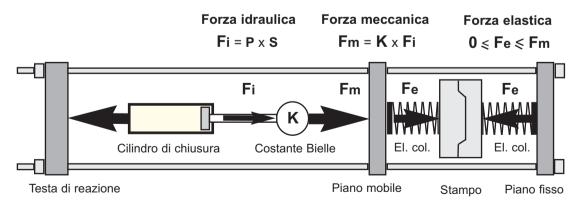

Queste conoscenze illustrano i concetti di pressione, portata, le caratteristiche della pressa più idonea per lo stampo, le principali funzioni che la pressa deve svolgere per chiudere lo stampo e applicare la forza di chiusura, la plastificazione del materiale e l'iniezione in cavità stampo. Importante è anche la comprensione dei grafici iniezione e il criterio per la stesura di un programma stampo.

## 21.2. Pressione idraulica e pressione specifica

La pressione idraulica è una grandezza scalare, cioè definita solo da un numero; infatti essa non ha una direzione, ma si esercita in tutte le direzioni perpendicolari alle superfici sulle quali agisce. Nel **Sistema Internazionale**, l'unità di misura della pressione idraulica è il **Pascal** definito come il rapporto tra l'unità di forza: **1 Newton** = 1 Kg x 1 m/s² [N] (cioè 1 kg massa moltiplicato l'accelerazione di 1 metro al secondo quadro) e l'unità di superficie: **1 metro quadrato** [m²].


#### $1 \text{ Pascal} = 1 \text{ N} / 1 \text{ m}^2$

Essendo questa unità di misura troppo piccola è stato creato il **Bar** come multiplo del **Pascal**, per avvicinare la sua unità di misura a quelle più comunemente utilizzate:




#### 21.5. Chiusura e apertura pressa

Il gruppo chiusura della pressa, composto da: Piano fisso, Piano mobile, Testa di reazione e quattro colonne con relativi dadi fissi e dadi mobili, ha il compito di **chiudere e aprire lo stampo** e di **applicare una forza elastica** sui due semi-stampi per impedirne l'apertura durante la fase d'iniezione materiale in cavità stampo.



La testa di reazione viene posizionata col motore spostatori in modo che la corsa chiusura/apertura sia adattata allo spessore dello stampo.



Esempio dell'applicazione della forza di chiusura su una pressa a ginocchiera. La forza elastica viene applicata sullo stampo con l'allungamento delle colonne. La forza elastica non può mai superare la forza meccanica!

## 21.23. Montaggio dello stampo

Dopo aver scelto la pressa ottimale e aver definito il programma stampo, si devono eseguire un certo numero di stampate per verificare che la qualità ottenibile sul pezzo sia conforme a quella concordata col cliente.

Scelta la pressa ottimale per queste prove, il montaggio dello stampo sui piani della pressa, si devono eseguire le seguenti fasi e operazioni:

- 1. Prendere la scheda tecnica del materiale, per la ricerca dei dati di stampaggio necessari per i calcoli da eseguire per la prova stampo.
- 2. Prendere una stampata di qualità, come riferimento.
- 3. Se lo stampo è nuovo, chiedere al progettista il volume della stampata e del pezzo, per poter calcolare il peso ideale del pezzo.
- **4.** Prendere la scheda fornita dall'ufficio qualità, per valutare le caratteristiche della qualità richiesta sul pezzo.
- 5. Prendere una bilancia al centesimo di grammo, per l'ottimizzazione del tempo e della pressione di mantenimento.
- **6.** Pulire tramogge e deumidificatori controllando che il materiale sia stato essicato per il tempo e alla temperatura consigliati dal fornitore del materiale.





- 7. Pulire i granulatori se hanno processato un materiale di diverso colore e/o famiglia d'appartenenza.
- 8. Per la pulizia del gruppo iniezione, inserire nel cilindro di plastificazione il materiale adatto per la sua pulizia. Alcuni esempi: PE-HD, Riblene LLDP, Polifor PP caricato talco. Seguire, altrimenti procedure aziendali, se presenti.
- 9. Oliare e pulire i piani pressa con liquido apposito.
- **10.** Prima di sollevare lo stampo col carroponte, eseguire i seguenti controlli:
  - a. sicurezza tavolino;
  - b. controllare la presenza di tutti i raccordi dell'acqua (controllare lo stato dei raccordi per verificare che non siano usurati o danneggiati; in tal caso è meglio sostituirli);



## 21.30. Smontaggio dello stampo

- 1. Salvare il programma stampo e compilare la scheda stampo, se necessario.
- 2. Eseguire lo svuotamento stampo, se presente l'opzione sul termoregolatore.
- 3. Spegnere i termoregolatori.
- **4.** Chiudere i rubinetti del condizionamento stampo (se collegati).
- 5. Staccare i tubi dallo stampo (i raccordi possono essere con o senza la valvola di non ritorno).






**6.** Inserire i maschi nei raccordi se hanno la valvola di non ritorno e soffiare nei tubi, per espellere completamente l'acqua residua.



7. Soffiare e pulire lo stampo con il detergente apposito e carta assorbente.



## **INDICE**

| 1.    | Lo stampo: bene d'investimento                        | 5  |
|-------|-------------------------------------------------------|----|
| 1.1.  | Le materie plastiche                                  | 7  |
| 1.2.  | La pressa a iniezione                                 | 12 |
| 1.3.  | Il programma stampo                                   | 14 |
| 1.4.  | Dal pezzo al profitto                                 | 15 |
| 1.5.  | Stampaggio e profitto                                 | 18 |
| 2.    | Concezione e progetto dello stampo                    | 22 |
| 2.1.  | L'idea dello stampo                                   | 22 |
| 2.2.  | Proprietà e qualità del pezzo                         | 26 |
| 2.3.  | Scelta della pressa                                   | 28 |
| 2.4.  | Progetto dello stampo                                 | 28 |
| 3.    | Tipologia stampi                                      | 31 |
| 3.1.  | Stampo standard a due piastre                         | 32 |
| 3.2.  | Stampo a due piastre con parti mobili                 | 33 |
| 3.3.  | Stampo con estrazione a terza piastra                 | 34 |
| 3.4.  | Stampo con parti mobili ed estrazione a terza piastra | 35 |
| 3.5.  | Stampo a due piastre con parti mobili e camere calde  | 36 |
| 3.6.  | Manufatto: scatola e coperchio                        | 37 |
| 4.    | Stampo standard a due piastre (coperchio)             | 39 |
| 4.1.  | Sezioni centrali dello stampo                         | 40 |
| 4.2.  | I due semi-stampi                                     | 42 |
| 4.3.  | Condizionamento dello stampo                          | 43 |
| 4.4.  | Funzionamento dello stampo                            | 45 |
| 4.5.  | Le piastre dello stampo                               | 46 |
| 4.6.  | Movimenti dello stampo                                | 48 |
| 4.7.  | Struttura dello stampo                                | 50 |
| 4.8.  | Elementi guida e viti di fissaggio                    | 54 |
| 4.9.  | Protezione anti-rotazione                             | 56 |
| 4.10. | Numero di piastre negli stampi                        | 57 |
| 4.11. | Piastra di fissaggio semi-stampo mobile               | 59 |
| 4.12. | Camera di estrazione                                  | 62 |
| 4.13. | Piastra di supporto                                   | 66 |
| 4.14. | Piastra cavità o porta-inserto parte mobile           | 68 |
| 4.15. | Piastra cavità o porta-inserto parte fissa            | 70 |
| 4.16. | Terza piastra                                         | 72 |
| 4.17. | Piastra di fissaggio semi-stampo fisso                | 73 |

| 5.    | Selezione materiali per lo stampo                                      | 74  |
|-------|------------------------------------------------------------------------|-----|
|       | <ul> <li>Produzione prevista per l'intera vita dello stampo</li> </ul> | 76  |
|       | – Particolari proprietà superficiali del pezzo                         | 76  |
|       | <ul> <li>Materie plastiche abrasive</li> </ul>                         | 77  |
|       | <ul> <li>Materie plastiche che reagiscono chimicamente</li> </ul>      | 77  |
| 5.1.  | Dimensioni dello stampo                                                | 78  |
|       | – Taglia della pressa                                                  | 78  |
|       | – Numero di impronte                                                   | 79  |
|       | <ul> <li>Lavorazioni interne dello stampo</li> </ul>                   | 79  |
|       | <ul> <li>Parti scorrevoli (carrelli, slitte, tasselli)</li> </ul>      | 80  |
|       | <ul> <li>Pressione in cavità stampo</li> </ul>                         | 81  |
| 5.2.  | Spessore delle piastre stampo                                          | 82  |
| 6.    | Specifiche del progetto stampo                                         | 84  |
| 6.1.  | Figura                                                                 | 85  |
| 6.2.  | Materiale plastico                                                     | 85  |
| 6.3.  | Impronta                                                               | 87  |
| 6.4.  | Inizio progetto stampo                                                 | 87  |
| 6.5.  | Volumi di produzione                                                   | 88  |
| 6.6.  | Analisi economica per il numero di impronte                            | 90  |
| 6.7.  | Impronte: numero e disposizione                                        | 94  |
| 6.8.  | Ramificazione dei canali                                               | 98  |
| 6.9.  | Principi per la ramificazione dei canali                               | 100 |
| 6.10. | Scelta della pressa                                                    | 104 |
|       | – Forza di chiusura e dati relativi                                    | 104 |
|       | <ul> <li>Forza di chiusura e parallelismo dei semi-stampi</li> </ul>   | 104 |
|       | <ul> <li>Portata massima d'iniezione</li> </ul>                        | 107 |
|       | <ul> <li>Forza di chiusura e picco di pressione</li> </ul>             | 108 |
| 7.    | Sformabilità                                                           | 110 |
| 7.1.  | Principi generali di sformatura                                        | 110 |
| 7.2.  | Superficie di separazione dei piani                                    | 110 |
| 7.3.  | Posizione pezzo in direzione di sformatura                             | 112 |
| 7.4.  | Spoglie del pezzo e angoli di spoglia                                  | 113 |
|       | <ul> <li>Criteri di scelta degli angoli di spoglia</li> </ul>          | 116 |
| 7.5.  | Sottosquadri da sformare                                               | 116 |
| 7.6.  | Estrazione del pezzo                                                   | 116 |
| 7.7.  | Problemi di sformatura e soluzioni                                     | 118 |
|       | <ul> <li>Condizioni superficiali del pezzo</li> </ul>                  | 118 |
|       | – Denti di presa sul pezzo                                             | 118 |
|       | - Superficie visibile frontale del pezzo                               | 119 |
|       | – Problemi sul profilo impronta                                        | 120 |
|       | - Formazione di vuoto in estrazione                                    | 120 |
| 7.8.  | Superficie linea di separazione "a livello"                            | 122 |
| 7.9.  | Superficie linea di separazione piani a forma "sagomata"               | 123 |
| 7.10. | Superficie linea di separazione piani "sbalzo"                         | 124 |
|       | - Superficie a "sbalzo" con contorno                                   | 124 |
| 7 11  | - Superficie a "sbalzo" con parte mobile                               | 125 |
| 7.11. | Piastre di usura nella separazione piani                               | 126 |

| 7.12. | Linea di separazione piani visibile sul pezzo                                       | 127 |
|-------|-------------------------------------------------------------------------------------|-----|
| 7.13. | Sottosquadri                                                                        | 129 |
| 7.14. | Sottosquadri sformabili                                                             | 129 |
| 7.15. | Sottosquadri non sformabili                                                         | 131 |
| 7.16. | Sottosquadri con filettatura                                                        | 133 |
| 7.17. | Spigoli vivi, raccordi, smussi                                                      | 135 |
| 7.18. | Asole e fori                                                                        | 136 |
| 7.19. | Aggetti                                                                             | 138 |
| 8.    | Sfiati o sfoghi d'aria                                                              | 141 |
| 8.1.  | Progetto geometrico degli sfoghi d'aria                                             | 142 |
| 8.2.  | Sfoghi d'aria tramite componenti                                                    | 143 |
|       | <ul> <li>Sfoghi d'aria tramite aste di estrazione</li> </ul>                        | 143 |
|       | – Sfoghi d'aria sull'estrattore                                                     | 144 |
|       | – Sfoghi d'aria con componenti mobili                                               | 145 |
|       | <ul> <li>Sfoghi d'aria con nuclei stampo</li> </ul>                                 | 145 |
|       | <ul> <li>Sfoghi d'aria con inserti porosi</li> </ul>                                | 146 |
| 8.3.  | Respiro dello stampo                                                                | 146 |
| 8.4.  | Simulazione di riempimento                                                          | 148 |
| 9.    | Condizionamento dello stampo                                                        | 150 |
|       | – Qualità del pezzo                                                                 | 151 |
|       | – Energia e risorse                                                                 | 152 |
|       | <ul> <li>Condizionamento e spessore del pezzo</li> </ul>                            | 153 |
|       | <ul> <li>Materiale e temperatura stampo</li> </ul>                                  | 154 |
|       | – Mezzi termici                                                                     | 154 |
| 9.1.  | Tipologie di condizionamento                                                        | 155 |
| 9.2.  | Condizionamento con forature                                                        | 157 |
| 9.3.  | Attrezzature ausiliarie di condizionamento                                          | 159 |
|       | – Deflettore                                                                        | 160 |
|       | - Gorgogliatore (fontana)                                                           | 161 |
|       | – Nuclei a spirale                                                                  | 162 |
|       | – Tubi di calore                                                                    | 164 |
| 9.4.  | Nuclei di rame                                                                      | 165 |
| 9.5.  | Cartucce di riscaldamento                                                           | 165 |
| 9.6.  | Collegamento dei circuiti                                                           | 166 |
| 9.7.  | Collegamento e sigillo delle forature                                               | 167 |
| 9.8.  | Sistemi di monitoraggio flussi e temperature (per l'industria 4.0)                  | 170 |
| 9.9.  | Componenti di un sistema di monitoraggio flusso e temperatura (per l'industria 4.0) | 173 |
| 9.10. | Esempi di sistemi di monitoraggio FT                                                | 175 |
| 10.   | Estrattori nello stampo                                                             | 178 |
|       | - Estrazione a trazione o a spinta                                                  | 178 |
|       | - Gruppo di estrazione                                                              | 179 |
| 10.1. | Tipologia di estrattori                                                             | 180 |
|       | - Estrattore "rotondo"                                                              | 180 |
|       | – Estrattore "a lama"                                                               | 181 |
|       | - Estrattore "a manicotto"                                                          | 181 |
|       | - Estrattore "elastico"                                                             | 182 |

|       | – Estrattore "elastico a presa"                                      | 183 |
|-------|----------------------------------------------------------------------|-----|
|       | - Estrattore "sagomato"                                              | 183 |
| 10.2. | Estrattori come attrezzi accessori                                   | 184 |
|       | – Sfoghi d'aria                                                      | 184 |
|       | – Perni di richiamo o di retro-spinta                                | 184 |
|       | – Estrattori di sfrido                                               | 185 |
| 10.3. | Estrattori a piano inclinato                                         | 186 |
| 10.4. | Piastra dell'estrattore                                              | 188 |
| 10.5. | Estrattore a due stadi                                               | 190 |
| 10.6. | Maschio restringente                                                 | 192 |
| 10.7. | Sformatura forzata                                                   | 192 |
| 11.   | Stampo a due piastre con parti mobili (coperchio)                    | 193 |
| 11.1. | Sezioni centrali dello stampo                                        | 194 |
| 11.2. | I due semi-stampi                                                    | 196 |
| 11.3. | Condizionamento dello stampo                                         | 197 |
| 11.4. | Parti mobili all'interno dello stampo                                | 198 |
| 11.5. | Sottosquadri sformabili e non sformabili                             | 200 |
| 11.6. | Funzionamento dello stampo                                           | 202 |
| 12.   | Stampo con estrazione a terza piastra (scatola)                      | 203 |
| 12.1. | Viste e sezioni dello stampo                                         | 204 |
| 12.2. | I due semi-stampi                                                    | 206 |
| 12.3. | La terza piastra                                                     | 207 |
| 12.4. | Condizionamento dello stampo                                         | 209 |
| 12.5. | Funzionamento dello stampo                                           | 210 |
| 13.   | Stampo con parti mobili ed estrazione a terza piastra (scatola)      | 211 |
| 13.1. | Sezioni centrali dello stampo                                        | 212 |
| 13.2. | I due semi-stampi                                                    | 214 |
| 13.3. | Parti mobili all'interno dello stampo                                | 215 |
| 13.4. | Terza piastra                                                        | 216 |
| 13.5. | Condizionamento dello stampo                                         | 217 |
| 13.6. | Funzionamento dello stampo                                           | 218 |
| 14.   | Camere calde                                                         | 219 |
| 14.1. | Vantaggi e svantaggi delle camere calde                              | 220 |
| 14.2. | Criteri di progetto delle camere calde                               | 220 |
| 14.3. | Ugelli e loro punti d'iniezione                                      | 222 |
|       | Ugelli: punto iniezione a sezione circolare                          | 223 |
|       | Ugelli: punto iniezione a sezione anulare                            | 224 |
|       | - Ugelli: punto iniezione a ingresso laterale                        | 225 |
| 1 4 4 | – Ugelli: punto iniezione a otturatore                               | 226 |
| 14.4. | Camere calde a ugello singolo                                        | 228 |
| 14.5. | Camere calde con più ugelli                                          | 230 |
| 14.6. | I passaggi materiale nelle camere calde                              | 236 |
| 14.7. | Applicazioni particolari con camere calde                            | 238 |
|       | - Stampi a piani multipli (Stack Moulds)                             | 238 |
|       | <ul> <li>Stampi "family mould" con iniezioni temporizzate</li> </ul> | 241 |

|          | <ul> <li>Stampi con iniezioni sequenziali</li> </ul>                            | 242 |
|----------|---------------------------------------------------------------------------------|-----|
|          | - Stampi per multi-colore e multi-materiale                                     | 245 |
|          | - Stampi con tavola rotante                                                     | 247 |
|          | •                                                                               |     |
| 15.      | Stampo a due piastre con parti mobili e camere calde (scatola con sottosquadro) | 249 |
| 15.1.    | Sezioni dello stampo                                                            | 250 |
| 15.2.    | I due semi-stampi                                                               | 252 |
| 15.3.    | Parti mobili all'interno dello stampo                                           | 253 |
| 15.4.    | Condizionamento dello stampo                                                    | 254 |
| 15.5.    | Le camere calde all'interno dello stampo                                        | 255 |
| 15.6.    | Funzionamento dello stampo                                                      | 258 |
| 16.      | Gruppo chiusura della pressa                                                    | 259 |
| 16.1.    | I tre piani della chiusura                                                      | 260 |
| 16.2.    | Forza di chiusura stampo con pressa a "ginocchiera"                             | 261 |
| 16.3.    | Forza di chiusura stampo con pressa a "pistone"                                 | 263 |
| 16.4.    | Sezione proiettata e forza di apertura stampo                                   | 264 |
| 16.5.    | Il "respiro" dello stampo                                                       | 265 |
| 16.6.    | Utilizzo del "respiro" dello stampo                                             | 266 |
| 10.0.    | Cilizzo dei Tespito dello stampo                                                | 200 |
| 17.      | Iniezione                                                                       | 267 |
| 17.1.    | Passaggi materiale                                                              | 268 |
| 17.2.    | Figura                                                                          | 269 |
|          | – Figura a spessori standard                                                    | 269 |
|          | – Figura a spessori sottili                                                     | 269 |
|          | – Figura a spessori irregolari                                                  | 270 |
|          | - Figura a spessori enormi                                                      | 270 |
|          | - Spessore pezzo: la regola d'oro                                               | 271 |
| 17.3.    | Punto d'iniezione                                                               | 272 |
| 17.5.    | - Posizione del punto d'iniezione                                               | 272 |
| 17.4.    | Programmi di simulazione                                                        | 273 |
| 1 / . 1. | - Simulazione per posizionare il punto d'iniezione                              | 275 |
| 17.5.    | Tipologia punti d'iniezione                                                     | 279 |
|          |                                                                                 |     |
| 17.6.    | Punto d'iniezione a sezione circolare                                           | 279 |
| 17.7.    | Punto d'iniezione a sezione rettangolare                                        | 281 |
| 17.8.    | Carota sul pezzo                                                                | 283 |
| 17.9.    | Punto d'iniezione "sottomarino"                                                 | 284 |
|          | - Cono del punto d'iniezione "sottomarino" nel semi-stampo mobile               | 285 |
|          | - Cono del punto d'iniezione "sottomarino" nel semi-stampo fisso                | 285 |
|          | – Frangi-flusso                                                                 | 285 |
|          | - Frangi-flusso con rientranza a gradino                                        | 286 |
|          | – Frangi-flusso con nervatura ausiliaria                                        | 287 |
| 17.10.   | Punto d'iniezione a "banana"                                                    | 288 |
| 17.11.   |                                                                                 | 289 |
| 17.12.   | Punto d'iniezione a "film"                                                      | 290 |
| 17.13.   | Punto d'iniezione a "ventaglio"                                                 | 291 |
| 17.14.   | Punto d'iniezione a "linguetta"                                                 | 292 |
|          | Punto d'iniezione a "diaframma"                                                 | 293 |
|          | Iniezione in manufatti con cerniera integrata                                   | 294 |

| 17.17.         | Ramificazione dei canali                                                  | 297 |
|----------------|---------------------------------------------------------------------------|-----|
| 17.18.         | Tipologia dei canali                                                      | 299 |
| 17.19.         | Canali freddi                                                             | 291 |
|                | <ul> <li>Canali: le sezioni trasversali</li> </ul>                        | 299 |
| 17.20.         | Carota                                                                    | 302 |
|                | – Analisi carota                                                          | 303 |
| 17.21.         | Stampo con pezzi diversi                                                  | 304 |
| 18.            | I materiali termoplastici                                                 | 305 |
| 18.1.          | Materiali amorfi e semi-cristallini                                       | 307 |
| 18.2.          | Dati di stampaggio materiale                                              | 310 |
| 18.3.          | Densità solida e densità liquida                                          | 310 |
| 18.4.          | Velocità periferica massima                                               | 312 |
| 18.5.          | Temperatura di stampaggio                                                 | 313 |
| 18.6.          | Temperatura dello stampo                                                  | 314 |
| 18.7.          | Temperatura di estrazione pezzo                                           | 315 |
| 18.8.          | Velocità massima di avanzamento del fronte                                | 316 |
| 18.9.          | Post-pressione minima e massima  Taballa dati minainali dai tampanlastici | 317 |
| 18.10.         | Tabella dati principali dei termoplastici                                 | 318 |
| 19.            | La curva di viscosità materiale                                           | 321 |
| 19.1.          | Viscosità del materiale                                                   | 322 |
| 19.2.          | Velocità di taglio                                                        | 323 |
| 19.3.          | Formule della velocità di taglio                                          | 324 |
| 19.4.          | Logaritmo di un numero                                                    | 325 |
| 19.5.          | Diagramma lineare e logaritmico                                           | 326 |
| 19.6.          | Curva di viscosità                                                        | 329 |
| 19.7.          | Formula caduta di pressione in passaggi circolari e rettangolari          | 328 |
| 19.8.          | Esempio di calcolo in passaggi circolari                                  | 329 |
| 19.9.          | Esempio di calcolo in passaggi rettangolari                               | 330 |
| 19.10.         | Conversione dei passaggi conici in cilindrici                             | 332 |
| 19.11.         | Melt Flow Index (MFI)                                                     | 334 |
| 20.            | Il software Melt Monitor (per l'industria 4.0)                            | 335 |
| 20.1.          | Modulo Dimensionamento cavità stampo                                      | 336 |
| 20.2           | – Procedura calcoli                                                       | 337 |
| 20.2.          | Modulo Prova stampo                                                       | 338 |
| 20.3.          | Modulo Curva di viscosità                                                 | 340 |
| 20.4.<br>20.5. | Modulo Visualizzazione tabelle                                            | 341 |
| 20.3.          | Modulo Data base prove stampo                                             | 342 |
| 21.            | Prova stampo                                                              | 345 |
| 21.1.          | Conoscenze preliminari                                                    | 346 |
| 21.2.          | Pressione idraulica e pressione specifica                                 | 346 |
| 21.3.          | La portata materiale                                                      | 348 |
| 21.4.          | La pressa a iniezione                                                     | 349 |
| 21.5.          | Chiusura e apertura pressa                                                | 350 |
| 21.6.          | Plastificazione del materiale                                             | 351 |
| 21.7.          | L'iniezione del materiale in cavità stampo                                | 352 |

| 21.8.  | Grafici iniezione                                                   | 353 |
|--------|---------------------------------------------------------------------|-----|
| 21.9.  | Scelta della pressa ottimale                                        | 354 |
| 21.10. | Stesura del programma stampo                                        | 355 |
| 21.11. | Qualità e massimo profitto                                          | 356 |
| 21.12. | Qualità del pezzo e del processo produttivo                         | 358 |
| 21.13. | La qualità come prodotto scientifico                                | 360 |
| 21.14. | L'evento fondamentale dello stampaggio                              | 362 |
| 21.15. | Il criterio fondamentale dello stampaggio                           | 364 |
| 21.16. | La fonte principale della qualità                                   | 365 |
| 21.17. | Le quattro aree che influenzano la qualità                          | 368 |
| 21.18. | Dalla qualità al massimo profitto                                   | 370 |
| 21.19. | Produzione del primo lotto                                          | 372 |
| 21.20. | Pre-collaudo funzionale dello stampo                                | 372 |
| 21.21. | Documenti, attrezzature e strumenti                                 | 372 |
| 21.22. | Materiale necessario per le prove                                   | 373 |
| 21.23. | Montaggio dello stampo                                              | 374 |
| 21.24. | Verifiche sui passaggi materiale                                    | 390 |
| 21.25. | Eliminazione dei difetti sul pezzo                                  | 396 |
|        | – Elenco completo dei difetti sul pezzo                             | 396 |
|        | – Elenco dei difetti eliminati usando: pressa ottimale,             |     |
|        | dimensionamento passaggi materiale e programma scientifico          | 399 |
|        | – Difetti causati dallo stampo                                      | 400 |
|        | – Difetti causati dal materiale                                     | 404 |
| 21.26. | Ottimizzazione del programma stampo e del tempo totale di ciclo     | 406 |
|        | - Il ciclo macchina                                                 | 406 |
|        | – Ottimizzazioni                                                    | 407 |
| 21.27. | Analisi sul miglioramento futuro della qualità                      | 410 |
| 21.28. | Verifiche del progettista in prova stampo o in produzione           | 410 |
| 21.29. | Consumi energetici                                                  | 411 |
| 21.30. | Smontaggio dello stampo                                             | 412 |
| 21.31. | Manutenzione programmata                                            | 426 |
| 21.32. | Manutenzione della pressa                                           | 426 |
| 21.33. | Manutenzione dello stampo                                           | 429 |
|        | - Manutenzione prima e durante la produzione                        | 429 |
|        | <ul> <li>Manutenzione dopo la produzione</li> </ul>                 | 431 |
| 21.34. | Opportunità mancate?                                                | 433 |
|        | - Spessori enormi del pezzo con materiali amorfi                    | 434 |
|        | - Variazione spessori con materiali cristallini                     | 435 |
|        | Canali di alimentazione impronte non equilibrati                    | 436 |
|        | - Pressioni elevate di stampaggio                                   | 437 |
|        | Il picco di pressione alla commutazione                             | 439 |
|        | <ul> <li>Dimensionamento passaggi materiale dello stampo</li> </ul> | 442 |
|        |                                                                     |     |

L'autore di questo manuale è un ingegnere che ha lavorato in diversi settori industriali: cartiere e uffici tecnici in Canada, macchine utensili a controllo numerico (Olivetti-Italia), vendita di servomotori applicati in ogni settore industriale, macchine tessili e macchine per lo stampaggio a iniezione per materiali termoplastici e gomme naturali e sintetiche (IMG). In un ventennio di attività, rivolta alla stesura di ogni tipo di documentazione tecnica per le presse a iniezione e di manuali tecnici per effettuare corsi di stampaggio ai clienti, è nata l'idea di promuovere una collaborazione più stretta fra i tecnici di stampaggio e i progettisti dello stampo. Lo scoglio da superare era il divario professionale esistente tra queste due categorie, dove tecnici altamente specializzati e ingegneri progettisti dovevano dialogare con altri tecnici non certo al loro livello. Ma esisteva una chiave per aprire questa porta: la realtà che lo stampo viene pagato dalle ditte di stampaggio.

Si è iniziato con corsi teorico-pratici di stampaggio in cui si dimostrava che, con semplici regole e accorgimenti, si poteva migliorare la qualità dei manufatti e ridurre i tempi di ciclo a beneficio dei risultati economici. Poi, è stato introdotto l'uso dei dati fondamentali del materiale e le formule per la ricerca dei parametri macchina più importanti. Infine, si è sviluppato un sistema software che, partendo dalla rilevazione della curva di viscosità del materiale, esegue l'ottimizzazione dei passaggi materiale dello stampo e crea un programma stampo nell'arco di tempo di pochi minuti. Il mondo dello stampaggio era così giunto ad un livello di professionalità e autorevolezza tale da potersi offrire come collaboratore ai tecnici qualificati del progetto dello stampo.

Con l'esperienza fatta, presso alcune ditte di stampaggio, che avevano l'ufficio progetti interno, si è riusciti a realizzare questo sogno.

Questo manuale sugli stampi nasce proprio con lo scopo di continuare a promuovere la collaborazione di questi due mondi che devono lavorare insieme, perché il livello scientifico acquisito dal mondo dello stampaggio a iniezione, oggi, ha aperto una porta che non si può più chiudere.

